皇子文学

字:
关灯 护眼
皇子文学 > 我真的只想当一个学神啊 > 第一百八十一章 纳维-斯托克斯方程

第一百八十一章 纳维-斯托克斯方程

  第一百八十一章 纳维-斯托克斯方程 (第1/2页)
  
  对于普通人来说,比起黎曼猜想、费马大定理、哥德巴赫猜想等世界知名的数学难题,“纳维-斯托克斯方程”显然颇为陌生,甚至不知道这到底是什么玩意。
  
  但对于从小就喜欢数学和理科的秦克来说,“纳维-斯托克斯方程”却是如雷贯耳的存在!
  
  “纳维-斯托克斯方程”,即(navier-stokes equation),简称n-s方程, 是数学届与物理届都非常知名的一个非线性偏微分方程组,被业界称为“流体运动的牛顿第二定律”,主要描述了粘性不可压缩流体(如液体和空气等)流动的基本力学规律。
  
  这个运动方程自1827年由克劳德·路易·纳维(claude-louis navier)根据以流体动量守恒的理论提出后,泊松、圣维南和乔治·斯托克斯分别进行了深入研究,并最终在1945年推导出来,形成一系列复杂至极的方程组。
  
  n-s方程也被誉为世上最有用的方程组之一, 因为它建立了流体的粒子动量的改变率(力)和作用在液体内部的压力的变化和耗散粘滞力(类似于摩擦力、产生于分子的相互作用)以及引力之间的关联。
  
  正是因为它建立了这样的关联,使得它可以描述出液体任意给定区域的力的动态平衡, 是流体流动建模的核心,在流体力学中有十分重要的意义。
  
  以此为基础,它既可以应用于模拟气候变化,洋流运向,甚至可以模拟出厄尔尼诺这样的全球性气象系统,也可以用于研究水管里的水流运动乃至于血液循环等流体运动。
  
  它也可应用到具体与日常生活相关的设计上,比如机翼的流体升力研究、车辆外壳的流体力学设计、空气污染效应的流动扩散分析等等。
  
  看到这里,是不是觉得它的用途大得惊人?
  
  问题是,n-s方程虽然意义重大也很实用,但它是一个非线性偏微分方程,求解非常困难和复杂,在求解思路或技术没有进一步发展和突破前,只有在某些十分简单的特例流动问题上才能求得其精确解。
  
  目前,全世界的数学家依然未能证明在三维座标、特定的初始条件下, n-s方程式是否有符合光滑性的解,也尚未证明若这样的解存在时,其动能有其上下界。
  
  上面这句话以通俗易懂的方式来解释,那就是现在整个世界的数学届,都在寻找n-s方程的通解,以证明该方程的解总是存在,以便通过这组方程准确地描述出任何流体、在任何起始条件下,未来任一时间点的情况。
  
  但对于n-s方程这样用数学理论阐明都困难的一组方程,想去证明这个方程组的解总是存在,又是何其的困难!
  
  所以经过两百年来无数的数学家投入无数的精力,也不过只有大约一百多个特解被解出来,唯一真正算得上是有点儿特殊成果的,是数学家让·勒雷在1934年时证明的,n-s方程的弱解存在,可以在平均值上满足n-s方程,但也仅此而已,无法在每一点上满足。
  
  此外夏裔数学家陶大师也曾写过一篇《finite time blowup for an averaged three-dimensional navier-stokes equation》的论文,将n-s方程全局正则性问题的超临界状态屏障形式化,让n-s方程的研究又有了新的推进,但距离解决“n-s方程的存在性与光滑性的问题”还很遥远。
  
  
  
  (本章未完,请点击下一页继续阅读)
『加入书签,方便阅读』
热门推荐
和离后,神医王妃野翻全京城 十八道金牌追令,开局混沌道体! 越界心动 Apop之我在首尔当外教 NBA:开局满级力量,库里被我惊呆了 娇软美人在末世封神了 龙族:从西游记归来的路明非 赘婿出山